
A Novel Physial Model and ComputationalMethod for Non-Isentropi, CompressibleTwo-Fluid Flow
Jeroen Wakers and Barry KorenCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.Jeroen.Wakers�wi.nl, Barry.Koren�wi.nlSummary. This paper desribes a �ve-equation model for ompressible two-uidow, based on physial ow equations only. The model is onservative and pressure-osillation free. Equations for ontinuous ow and jump onditions for disontinu-ities are given, as well as a disretisation of the equations and an adaptation ofthe HLL Riemann solver to two-uid ow. Numerial tests in 1D and 2D show theauray of the method.
1 IntrodutionInterfae-apturing methods for ompressible two-uid ows are based onmixture-uid models. The interfae between the uids appears as a numer-ially smeared transition from uid 1 to uid 2. Many onservative formu-lations of suh models produe large pressure errors. This problem an besolved by using loally non-onservative methods [1℄ or by solving the fulltwo-phase ow model [2℄.Here, an intermediate approah is presented: a two-uid method that isfully onservative and pressure-osillation free. It is an extension of the workby Van Brummelen and Koren [3℄, it will be desribed in detail in a futurepaper. A similar method is derived in a di�erent way by Kapila et al. [4℄.The present method has two major advantages. First, the onservativeformulation gives good apturing of shoks and interfaes, also for problemswith very strong shoks. And seond, the model strongly resembles a single-uid model: it does not require a omplex interfae-traking algorithm. It anthus be solved with existing tehniques, even on omplex, irregular grids.
2 Flow modelThe physial model used here for two-uid ow is based on a mixture model.However, the uids are not fully mixed: the `mixture' may be thought toonsist of very small bits of the two pure uids, arranged in an arbitrarypattern. Eah uid has its own pure-uid equation of state and the uidsinterat only by exerting fores on eah other. In the model, the pressure andthe veloity of the uids are equal, but eah uid has its own density. The



2 Jeroen Wakers and Barry Korenvolume fration of uid 1, �, is used to denote the relative amounts of thetwo uids. Thus, in 1D, we have �ve independent state variables (p, u, �1, �2and �), so we need �ve di�erential equations to solve the ow.The two-uid bulk ow satis�es the standard Euler equations:(�)t + (�u)x = 0 ; (1a)(�u)t + ��u2 + p�x = 0 ; (1b)(�E)t + (�Eu+ pu)x = 0 : (1)In these equations, the bulk quantities are � = ��1 + (1 � �)�2 and �E =��1E1+ (1��)�2E2, with the total energy for eah uid j = 1; 2 de�ned asEj = ej + 12u2. Here ej is the internal energy of uid j.Two more ow equations are needed to lose the system. The �rst one isthe onservation of mass for uid 1:(�1�)t + (�1u�)x = 0 : (2a)Together with equation (1a), this equation gives mass onservation for bothuids. For the last equation, the energy balane of uid 1 is used. As theuids exert fores on eah other, they exhange energy, whih appears as asoure term in the equation:(�1E1�)t + (�1E1u�+ pu�)x = S : (2b)An expression for this soure term is derived in the next setion.To lose the system, equations of state (EOS) are needed for the twouids. A possible EOS is the ideal gas law,p = (1 � 1)�1e1 = (2 � 1)�2e2 ; (3)with onstant 's. For this equation, it is easy to ompute the primitivevariables p and � from the total energies.
3 The soure term3.1 Derivation of the soure termThe soure term S in equation (2b) models the exhange of energy betweenuid 2 and uid 1. Euler ow has no heat ondution, so the only energyexhanged is the work done by the fore between the uids. This fore isfound from a momentum analysis.Consider a uid element in a smooth 1D ow (Fig. 1). The element on-tains uid 1 and uid 2 (the interfae is drawn shematially). The fore onthe entire uid element is p(x) � p(x + dx) and its bulk mass is �dx. Thefore on uid 1 in the element is (p�)(x)� (p�)(x+ dx) + SMdx. Its mass is



A Novel Model for Compressible Two-Fluid Flow 3�1�dx and its aeleration is equal to the aeleration of the entire element(beause both uids have the same veloity). Thereforep(x)� p(x+ dx)�dx = (p�)(x)� (p�)(x+ dx) + SMdx�1�dx :The fore SM follows from this expression (using the mass fration � = �1�� ):SM = p�x + (�� �) px : (4)The energy soure term S is the work done by the fore SM :S = uSM = pu�x + (�� �)upx : (5)

uid 1
uid 2SM

x+ dxx
p(x+ dx)p(x) �(x) �(x+ dx)

Fig. 1. Two-uid element in smooth 1D ow.
3.2 Charateristi analysis of the system for ideal gasThe soure term (5) is valid for any EOS. Substitution of the ideal gas law(3) allows a harateristi analysis of the ow equations. This results in �vewave speeds,�1 = u� ; �2;3;4 = u; �5 = u+ ; with  =p(�1 + (1� �)2)p=� : (6)This ombination of wave speeds is physially orret. It an be proved that(5) is the only possible soure term that gives suh a ombination.3.3 Soure term in disontinuitiesTo allow weak solutions with disontinuities of the two-uid ow equations,we need a proper de�nition of the ow aross a disontinuity. The �rst fourequations, (1a) { (1) and (2a), satisfy the Rankine-Hugoniot ondition [f ℄ =s[q℄, with s the speed of the disontinuity. For the �fth equation, (2b), thisondition beomes [f ℄ = s[q℄ + Z xRxL Sdx ; (7)



4 Jeroen Wakers and Barry Korenwhere xL and xR denote the oordinates of the left and right side of thedisontinuity. The integral must be evaluated aross the disontinuity, whihis impossible. However, if we assume that the disontinuity is the invisid limitof a visous layer and thus has a ontinuous internal struture (the preiseshape is unimportant), then we an write the state variables as ontinuousfuntions of p and integrate the soure term:Z xRxL Sdx = [pu�℄ + 12�L�L(uL � s)[u℄2 + 1�L(uL � s) Z pRpL p�dp : (8)A derivation of this expression will be given in a future paper. The lastintegral an be evaluated exatly, but it requires an EOS. So there is a uniquejump ondition for the present two-uid model, but, unlike the single-uidjump ondition, it depends on the material properties of the uids.
4 Numerial method4.1 Seond-order aurate disretisationThe ow equations are disretised with a seond-order aurate �nite-volumesheme. Fluxes are omputed with an improved version of Linde's three-waveHLL approximate Riemann solver [5℄, ombined with a limited reonstrutionof the ell interfae states. The limiter is applied to the primitive variables�, u, p, � and �. Time stepping is done with a two-step sheme (see [7℄).4.2 Numerial soure termA disretisation of the soure term is needed in two plaes. First, an ap-proximation of the soure term in a disontinuity is needed to ompute theHLL ux. The HLL solver models a Riemann problem with three disontin-uous waves. The easiest way to inorporate the soure term in these wavesis to ompute only one approximate solution of (8), using the left and rightell interfae state, and to divide this soure term proportionally over thethree waves. This proedure auses some small inauraies, but it is fastand straightforward.Seondly, the soure term for the time integration is omputed. It onsistsof two parts:i) soures in the disontinuities at the ell faes, that are summed over allHLL waves on interfaes i� 12 and i+ 12 , that atually run into ell i,ii) soures in the ontinuous ow in the ell, whih are integrated over thepieewise linear approximations to the primitive variables, that followfrom the use of the limiter.These two soures are summed per ell.



A Novel Model for Compressible Two-Fluid Flow 55 Numerial results5.1 Shok-tube testThe method is tested �rst on a 1D Riemann problem for ideal gases: a two-uid variant of Sod's problem, with a ten times higher left pressure and den-sity, giving it a pressure ratio of 100:1. Figure 2 shows that the disontinuities(shok and two-uid interfae) are in the proper loations. The pressure isonstant over the ontat disontinuity and the volume fration is onstantover both the shok and the expansion fan. A onvergene study for thisproblem shows that the L1-errors in �, u and p onverge approximately withthe power 0.96 of the mesh width. The volume fration onverges with thepower 0.78 of the mesh width. This rate of onvergene is omparable to thatfor similar single-uid solutions.
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Fig. 2. High-pressure, two-uid Sod problem. (�; u; p)L = (10; 0; 10), (�; u; p)R =(0:125; 0; 0:1), L = 1:4 and R = 1:6. The grid has 200 ells, 160 time steps,�t=�x = 0:2 (CFL = j�maxj�t=�x = 0:56). Solid lines: exat solution.
5.2 Shok hitting helium bubble in airThis 2D test ase has been taken from literature [6℄. It onsists of a ylindrialhelium bubble in air, whih is hit by an inoming shok wave. The problem issolved on a grid of 200�400 ells, with �t = 1:25� 10�5. Figure 3 shows thesolution at two times. The (half) bubble is visible between x = �0.025 andx = 0.025. The inident shok, oming from the right, an be seen in the airabove the bubble, the urved shok in the bubble runs ahead of this shok.The rightmost wave is an expansion wave, reeted into the air behind theshok. At the later time, a ompliated �-shok struture has developed abovethe bubble. Figure 4 shows the pressure and the volume fration for this time.Of the waves appearing in the density plot, the shok waves and expansionsare visible in the pressure plot only and the interfae in the volume frationplot only, as it should be. The pressure is ontinuous over the interfae.The speeds of the shoks and the interfae at the enterline (y = 0) havebeen ompared with results from Quirk and Karni [6℄ (obtained on a very�ne, adapted grid). The di�erene is between 0.7% and 2.2%.
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Fig. 3. Shok hitting helium bubble, density at t = 2:74�10�3 and t = 10:74�10�3.
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